Back to News & Media
Wednesday, March 29, 2017

Next Trip: Inside the Sun’s Atmosphere

NASA will measure solar winds in space with technology by Draper and the Smithsonian Astrophysical Observatory 

CAMBRIDGE, MA – Every so often the sun emits an explosive burst of charged particles that makes its way to Earth and often wreaks havoc on power grids, aircraft and satellite systems. When clouds of high-speed charged particles come racing off the sun, they can bathe spacecraft, astronauts and planetary surfaces in damaging radiation. Understanding why the sun occasionally emits these high-energy particles can help scientists predict space weather. Knowing when solar energetic particles may hit Earth can help people on the planet take precautions. 

Now, Draper and the Smithsonian Astrophysical Observatory (SAO) are addressing these challenges, and hoping to untangle these unsolved science mysteries, by developing sophisticated sensors for a new NASA mission. Launching in 2018, NASA’s Solar Probe Plus spacecraft, which is being designed and built by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will make 24 solar flybys over nearly seven years, setting a new record for the fastest moving man-made object as it zips 37.6 million kilometers closer to the sun than any spacecraft that has ever studied this star, and be exposed to temperatures exceeding 2500 degrees Fahrenheit.

NASA’s Solar Probe Plus—the first mission that will fly into the sun’s upper atmosphere and “touch” the sun—will collect data on the mechanisms that heat the corona and accelerate the solar wind, a constant flow of charged particles from the sun. These are two processes with fundamental roles in the complex interconnected system linking the sun and near-Earth space—a system that can drive changes in our space weather and impact our satellites.

To capture the velocity and direction of the positively-charged particles, Solar Probe Plus 
will be equipped with a Faraday cup, built by the Smithsonian Astrophysical Observatory, with technical support from Draper, and operated by SAO and the University of Michigan in Ann Arbor. The Faraday cup, which is capable of measuring the full force of supersonic solar particles and radiation, is one of only two instruments riding outside the protective sunshield of NASA’s Solar Probe Plus. The challenge will be to capture the data while operating at extreme temperatures on the fastest moving manmade spacecraft ever created—it will achieve a velocity of close to 200 km/sec—and do it with accuracy.

For years, astronomers have studied the sun, but never from inside the sun’s atmosphere, according to Seamus Tuohy, Director of the Space Systems Program Office at Draper. “Such a mission would require a spacecraft and instrumentation capable of withstanding extremes of radiation, high velocity travel and the harsh solar condition—and that is the kind of program deeply familiar to Draper and the Smithsonian Astrophysical Observatory.”

The investigation will specifically track the most abundant particles in the solar atmosphere and wind—electrons, protons and helium ions—“in addition to answering fundamental science questions, the intent is to better understand the risks space weather poses to the modern communication, aviation and energy systems we all rely on,” said Justin C. Kasper, principal investigator at the Smithsonian Astrophysical Observatory and University of Michigan Professor in Space Science. “Many of the systems we in the modern world rely on—our telecommunications, GPS, satellites and power grids—could be disrupted for an extended period of time if a large solar storm were to happen today. Solar Probe Plus will help us predict and manage the impact of space weather on society.”

Harvard-Smithsonian Center for Astrophysics

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

NASA’s Solar Probe Plus will enter the sun’s corona to understand space weather using a Faraday cup developed by the Smithsonian Astrophysical Observatory and Draper. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory
Capabilities Used
Positioning, Navigation & Timing (PNT)

Draper develops novel PN&T solutions by combining precision instrumentation, advanced hardware technology, comprehensive algorithm and software development skills, and unique infrastructure and test resources to deploy system solutions. The scope of these efforts generally focuses on guidance, navigation, and control GN&C-related needs, ranging from highly accurate, inertial solutions for (ICBMs) and inertial/stellar solutions for SLBMs, to integrated Inertial Navigation System(INS)/GPS solutions for gun-fired munitions, to multisensor configurations for soldier navigation in GPS-challenged environments. Emerging technologies under development that leverage and advance commercial technology offerings include celestial navigation (compact star cameras), inertial navigation (MEMS, cold atom sensors), precision time transfer (precision optics, chip-scale atomic clocks) and vision-based navigation (cell phone cameras, combinatorial signal processing algorithms).

Autonomous Systems

Draper combines mission planning, PN&T, situational awareness, and novel GN&C designs to develop and deploy autonomous platforms for ground, air, sea and undersea needs. These systems range in complexity from human-in-the-loop to systems that operate without any human intervention. The design of these systems generally involves decomposing the mission needs into sets of scenarios that result in trade studies that lead to an optimized solution with key performance requirements.  Draper continues to advance the field of autonomy through research in the areas of mission planning, sensing and perception, mobility, learning, real-time performance evaluation and human trust in autonomous systems.

Precision Instrumentation

Draper develops precision instrumentation systems that exceed the state-of-the-art in key parameters (input range, accuracy, stability, bandwidth, ruggedness, etc.) that are designed specifically to operate in our sponsor’s most challenging environments (high shock, high temperature, radiation, etc.).  As a recognized leader in the development and application of precision instrumentation solutions for platforms ranging from missiles to people to micro-Unmanned Aerial Vehicles (UAVs), Draper finds or develops state-of-the-art components (gyros, accelerometers, magnetometers, precision clocks, optical systems, etc.) that meet the demanding size, weight, power and cost needs of our sponsors and applies extensive system design capabilities consisting of modeling, mechanical and electrical design, packaging and development-level testing to realize instrumentation solutions that meet these critical and demanding needs.

Media Contact

Media Relations

Contact Info: 
Strategic Communication

Media Relations